
Neural Network
Workflow Systems

CSE545 - Spring 2023
Stony Brook University

H. Andrew Schwartz

i.e.
PyTorch

TensorFlow

 Big Data Analytics, The Class

Goal: Generalizations
A model or summarization of the data.

Hadoop File System

MapReduce

Spark

Deep Learning Frameworks

Similarity Search

Recommendation Systems
Link Analysis

Transformers/Self-SupervisionStreaming
Hypothesis Testing

Data Workflow Frameworks Analytics and Algorithms

Spark Overview

Spark is fast for being so flexible

● Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.

● Flexible: Many transformations -- can contain any custom code.

 Limitations of Spark

Spark Overview

Spark is fast for being so flexible

● Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.

● Flexible: Many transformations -- can contain any custom code.

However:

● Hadoop MapReduce can still be better for extreme IO, data that will not fit in
memory across cluster.

 Limitations of Spark

Spark Overview

Spark is fast for being so flexible

● Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.

● Flexible: Many transformations -- can contain any custom code.

However:

● Hadoop MapReduce can still be better for extreme IO, data that will not fit in
memory across cluster.

 Limitations of Spark

IO Bound

large files (TBs or PBs)

Compute Bound

many numeric computations
SparkMapReduce

(1s of TBs, 100s of GBs)

Spark Overview

Spark is fast for being so flexible

● Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.

● Flexible: Many transformations -- can contain any custom code.

However:

● Hadoop MapReduce can still be better for extreme IO, data that will not fit in
memory across cluster.

● Modern machine learning (esp. Deep learning), a common big data task,
requires heavy numeric computation.

 Limitations of Spark

IO Bound

(large files: TBs or PBs)

Compute Bound

(many numeric computations)
SparkMapReduce

(1s of TBs, 100s of GBs)
* this is the subjective approximation of the instructor as of February 2020. A lot of factors at play.

Spark Overview

Spark is fast for being so flexible

● Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.

● Flexible: Many transformations -- can contain any custom code.

However:

● Hadoop MapReduce can still be better for extreme IO, data that will not fit in
memory across cluster.

● Modern machine learning (esp. Deep learning), a common big data task,
requires heavy numeric computation.

 Limitations of Spark

IO Bound

(large files: TBs or PBs)

Compute Bound

(many numeric computations)
SparkMapReduce

(1s of TBs, 100s of GBs)

PyTorch/TensorFlow

* this is the subjective approximation of the instructor as of February 2020. A lot of factors at play.

● Understand a neural network as transformations on tensors.

● Understand PyTorch as a data workflow system.

○ Know the key components of PyTorch

○ Understand the key concepts around distributed neural

network processing.

● Execute basic pytorch on moderately large data.

● Establish a foundation to distribute deep learning models

Spark Overview Learning Objectives

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Spark Overview What is PyTorch?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

(i.stack.imgur.com)

A multi-dimensional matrix

Spark Overview What is a tensor?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

(i.stack.imgur.com)

A 2-d tensor is just a matrix.
1-d: vector
0-d: a constant / scalar

Note: Linguistic ambiguity:
Dimensions of a Tensor =/=
Dimensions of a Matrix

Spark Overview What is a tensor?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Examples > 2-d :
Image definitions in terms of RGB per pixel

Image[row][column][rgb]

Subject, Verb, Object representation of language:
Counts[verb][subject][object]

Spark Overview What is a tensor?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Technically, less abstract than RDDs which could hold tensors as
well as many other data structures (dictionaries/HashMaps,
Trees, ...etc…).

Then, why PyTorch?

Spark Overview What is a tensor?

Efficient, high-level built-in linear algebra and machine
learning optimization operations (i.e. transformations).

enables complex models, like deep learning

Spark OverviewWhy Pytorch?

Efficient, high-level built-in linear algebra and machine
learning optimization operations.

enables complex models, deep neural networks

(Bakshi, 2016, “What is Deep Learning? Getting Started With Deep Learning”)

Spark OverviewWhy PyTorch?

Linear Regression: ŷ = wX

Neural Network Nodes: output = f(wX)

From Linear Regression to Neural Nets

Linear Regression: ŷ = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

From Linear Regression to Neural Nets

z = wX

Logistic: 𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

From Linear Regression to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

From Linear Regression to Neural Nets

Efficient, high-level built-in linear algebra for deep neural
network operations.

Spark OverviewPyTorch

Efficient, high-level built-in linear algebra for deep neural
network operations.

Spark OverviewPyTorch

More than one
hidden layer.

Efficient, high-level built-in linear algebra for deep neural
network operations.

Spark OverviewPyTorch

More than one
hidden layer.
Will visit in
part II

Efficient, high-level built-in linear algebra for neural network
operations.

Can be conceptualized as a graph of
operations on tensors (matrices):

Spark OverviewPyTorch

Efficient, high-level built-in linear algebra for neural network
operations.

Can be conceptualized as a graph of
operations on tensors (matrices):

Spark OverviewPyTorch

import torch
from torch import nn #predefined nodes

x = torch.Tensor(input)
w= torch.random.randn(X.shape, 1) #weights
z = torch.matmul(x, beta)
yhat = nn.functional.relu(z)
loss = nn.MSELoss(yhat, torch.Tensor(y))

Linear Regression: ŷ = 𝛽X

Objective: Learn w, such that (y - 𝛽X)2 is minimized

Linear Regression

Linear Regression: ŷ = 𝛽X

Objective: Learn w, such that (y - 𝛽X)2 is minimized

How do we solve for 𝛽?

Linear Regression

Linear Regression: ŷ = 𝛽X

Objective: Learn w, such that (y - 𝛽X)2 is minimized

How do we solve for 𝛽?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by
equating it to 0

Linear Regression

Linear Regression: ŷ = 𝛽X

Objective: Learn w, such that (y - 𝛽X)2 is minimized

How do we solve for 𝛽?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by
equating it to 0

𝛽opt = (XTX)-1XTy

Linear Regression

Linear Regression: ŷ = 𝛽X

Objective: Learn w, such that (y - 𝛽X)2 is minimized

How do we solve for 𝛽?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by
equating it to 0

2. Numerical Gradient: Start at a random point and move in the direction of
minima until optima is reached

Linear Regression

Linear Regression: ŷ = 𝛽X

Objective: Learn w, such that (y - 𝛽X)2 is minimized

How do we solve for 𝛽?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by
equating it to 0

2. Numerical Gradient: Start at a random point and move in the direction of
minima until optima is reached

Linear Regression

Linear Regression: Trying to find “betas” that minimize:

Spark OverviewNumerical Gradient Approach

Linear Regression: Trying to find “betas” that minimize:

matrix multiply

Spark OverviewNumerical Gradient Approach

Linear Regression: Trying to find “betas” that minimize:

Thus:

matrix multiply

Spark OverviewNumerical Gradient Approach

Linear Regression: Trying to find “betas” that minimize:

Thus:

How to update?

Spark OverviewNumerical Gradient Approach

Linear Regression: Trying to find “betas” that minimize:

Thus:

How to update?

Spark OverviewNumerical Gradient Approach

𝞪: Learning Rate

Linear Regression: Trying to find “betas” that minimize:

Thus:

How to update?

Spark OverviewNumerical Gradient Approach

𝞪: Learning Rate

Linear Regression: Trying to find “betas” that minimize:

Gradient Descent:

Spark OverviewNumerical Gradient Approach

Linear Regression: Trying to find “betas” that minimize:

Gradient Descent:

But there are other gradient descent based optimization methods which are better*

Spark OverviewNumerical Gradient Approach

Linear Regression: Trying to find “betas” that minimize:

Gradient Descent:

But there are other gradient descent based optimization methods which are better*

Spark OverviewNumerical Gradient Approach

Animation: Alec Radford

Spark OverviewLinear Regression as DAG

How do Machine learning/ Deep learning frameworks represent these models?

Spark OverviewLinear Regression as DAG

How do Machine learning/ Deep learning frameworks represent these models?

Computational Graph!

Spark OverviewLinear Regression as DAG

x

𝛽

MatMul Subtract

y

Square L

L = (y - 𝛽x)2

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Hyperbolic tangent: tanh(z) = (e2z - 1) / (e2z + 1)

Spark OverviewActivations

Spark OverviewLinear Regression as DAG

x

𝛽

MatMul Subtract

y

Square
L

L = (y - f(𝛽x))2

f: ReLU

ReLU

Spark OverviewLinear Regression as DAG

x

𝛽

MatMul Subtract

y

Square
L

L = (y - f(𝛽x))2

f: ReLU

ReLU

import torch
from torch import nn

x = torch.Tensor(input_features)
y = torch.Tensor(input_scores)
beta = torch.random.randn(X.shape, 1)
z = torch.matmul(x, beta)
yhat = nn.functional.relu(z)
loss = nn.MSELoss(yhat, y)

Native Linear Regression Implementation (Link)

Torch.nn Linear Regression Implementation (Link)

Spark OverviewPyTorch Demo

https://adithya8.github.io/assets/cse545-sp23/intro_pytorch_linear_regression.txt
https://adithya8.github.io/assets/cse545-sp23/intro_nn_linear_regression.txt

building blocks (torch.nn)
 predefined layers; e.g.:
 .Linear, .ReLu,
 .MSELoss, .Transformer
 .CrossEntropyLoss

torch.Tensor
useful attributes:
 dtype: data type ('torch.float32')
 shape: tensor size
 device: where to store

operations (torch.)
 computation on tensors, e.g. :
 +, *, .floor, .abs
 .sum, .max, .mean,
 .matmul, .unique

nn.Module
__init__
forward
(graph)

Spark Overview Ingredients of PyTorch

https://pytorch.org/docs/stable/nn.html#
https://pytorch.org/docs/stable/tensor_attributes.html
https://pytorch.org/docs/stable/torch.html#math-operations
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

building blocks (torch.nn)
 predefined layers; e.g.:
 .Linear, .ReLu,
 .MSELoss, .Transformer
 .CrossEntropyLoss

torch.Tensor
useful attributes:
 dtype: data type ('torch.float32')
 shape: tensor size
 device: where to store

operations (torch.)
 computation on tensors, e.g. :
 +, *, .floor, .abs
 .sum, .max, .mean,
 .matmul, .unique

nn.Module
__init__
forward
(graph)

Spark Overview Ingredients of PyTorch
class ToyModel(nn.Module): #Pytorch: graph example
 def __init__(self):

 #initialize all nn objects:
 super(ToyModel, self).__init__()
 self.net1 = torch.nn.Linear(10, 10)
 self.relu = torch.nn.ReLU()
 self.net2 = torch.nn.Linear(10, 1)

 def forward(self, x):
 #define graph

 x = self.relu(self.net1(x))
 return self.net2(x)

https://pytorch.org/docs/stable/nn.html#
https://pytorch.org/docs/stable/tensor_attributes.html
https://pytorch.org/docs/stable/torch.html#math-operations
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear

building blocks (torch.nn)
 predefined layers; e.g.:
 .Linear, .ReLu,
 .MSELoss, .Transformer
 .CrossEntropyLoss

torch.Tensor
useful attributes:
 dtype: data type ('torch.float32')
 shape: tensor size
 device: where to store

operations (torch.)
 computation on tensors, e.g. :
 +, *, .floor, .abs
 .sum, .max, .mean,
 .matmul, .unique

nn.Module
__init__
forward
(graph)

Spark Overview Ingredients of PyTorch
class ToyModel(nn.Module): #Pytorch: graph example
 def __init__(self):

 #initialize all nn objects:
 super(ToyModel, self).__init__()
 self.net1 = torch.nn.Linear(10, 10)
 self.relu = torch.nn.ReLU()
 self.net2 = torch.nn.Linear(10, 1)

 def forward(self, x):
 #define graph

 x = self.relu(self.net1(x))
 return self.net2(x)

…
tm =ToyModel()

#training loop
for i in range(num_iters):
 …
 y_pred = tm(x)

 nn.MSELoss(y_pred, y)

 …

https://pytorch.org/docs/stable/nn.html#
https://pytorch.org/docs/stable/tensor_attributes.html
https://pytorch.org/docs/stable/torch.html#math-operations
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear

Typical use-case: (Supervised Machine Learning)
Determine weights, W, of a function, f , such that |ε| is minimized: f(X|W) = Y + ε

Spark Overview PyTorch

Typical use-case:
Determine weights, W, of a function, f , such that |ε| is minimized: f(X|W) = Y + ε

Spark Overview PyTorch

X
1
 X

2
 X

3
 Y

Typical use-case:
Determine weights, W, of a function, f , such that |ε| is minimized: f(X|W) = Y + ε

Spark Overview PyTorch

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

Typical use-case:
Determine weights, W, of a function, f , such that |ε| is minimized: f(X|W) = Y + ε

Spark Overview PyTorch

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

f given w
1

, w
2
...., w

p

(typically, p >= m)

Typical use-case:
Determine weights, W, of a function, f , such that |ε| is minimized: f(X|W) = Y +

ε

Spark Overview PyTorch

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

f given w
1

, w
2
...., w

p

(typically, p >= m)

f(X|W) = Ŷ
Y = (X|W) + ε

Y = Ŷ + ε
ε = Ŷ - Y

Typical use-case:
Determine weights, W, of a function, f , such that |ε| is minimized: f(X|W) = Y +

ε

Spark Overview PyTorch

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

f given w
1

, w
2
...., w

p

(typically, p >= m)

Typically very complex!Typically very complex!Typically, very complex!

f(X|W) = Ŷ
ε = Ŷ - Y
f(X|W) = Ŷ

Y = f(X|W) + ε
Y = Ŷ + ε
ε = Ŷ - Y

X
1
 X

2
 X

3
 Y

X
1

(1) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y(1)

 X
13

 X
14

 X
15

... X
m

Typical use-case:
Determine weights, W, of a function, f , such that |ε| is minimized: f(X|W) = Y +

ε

W determined through gradient descent:
 back propagating error across the network that defines f.

Spark Overview PyTorch

f given w
1

, w
2
...., w

p

(typically, p >= m)

f(X|W) = Ŷ
ε = Ŷ - Y
f(X|W) = Ŷ

Y = (X|W) + ε
Y = Ŷ + ε
ε = Ŷ - Y

X
1
 X

2
 X

3
 Y

X
1

(1) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y(1)

 X
13

 X
14

 X
15

... X
m

Typical use-case:
Determine weights, W, of a function, f , such that |ε| is minimized: f(X|W) = Y +

ε

W determined through gradient descent:
 back propagating error across the network that defines f.

Spark Overview PyTorch

f given w
1

, w
2
...., w

p

(typically, p >= m)

X
1

(2) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y(2)

 X
13

 X
14

 X
15

... X
m

X
1

(3) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y(3)

 X
13

 X
14

 X
15

... X
m

X
1

(4) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y(4)

 X
13

 X
14

 X
15

... X
m

X
1

(...) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 ...

 X
13

 X
14

 X
15

... X
m

X
1

(N) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y(N)

 X
13

 X
14

 X
15

... X
m

minimizes ε on N training examples

f(X|W) = Ŷ
ε = Ŷ - Y
f(X|W) = Ŷ

Y = (X|W) + ε
Y = Ŷ + ε
ε = Ŷ - Y

TensorFlow has built-in ability to derive gradients given a cost function.

 tf.gradients(cost, [params])
(rasbt, http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

Spark Overview Weights Derived from Gradients

=|ε|

Linear Regression: Trying to find “betas” that minimize:

Thus:

How to update?

(for gradient descent) “learning rate”

Spark Overview Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

Thus:

In standard linear equation:

(if we add a column of 1s, mx + b is just matmul(m, x))

matrix multiply

Spark Overview Weights Derived from Gradients

Time to train Bert Large (330 M) on K80, which is 530 times smaller

than GPT3

Spark OverviewHow to train GPT3?

Dave Troiano, 2020

https://www.determined.ai/blog/faster-nlp-with-deep-learning-distributed-training

Time to train Bert Large (330 M) on K80, which is 530 times smaller

than GPT3

For the same amount of data, GPT3 can be trained in 212k mins =

3533 hours = 147 days*

Spark OverviewHow to train GPT3?

*GPT3 wont fit into the memory of a single K80
Dave Troiano, 2020

https://www.determined.ai/blog/faster-nlp-with-deep-learning-distributed-training

Time to train Bert Large (330 M) on K80, which is 530 times smaller

than GPT3

Spark OverviewHow to train GPT3?

Dave Troiano, 2020

https://www.determined.ai/blog/faster-nlp-with-deep-learning-distributed-training

Options for Distributing ML
1. Distribute copies of entire dataset

a. Train over all with different hyperparameters
b. Train different folds per worker node.

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Spark Overview Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing MLSpark Overview Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing MLSpark Overview Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing MLSpark Overview Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing MLSpark Overview Options for distribution Done often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Options for Distributing MLSpark Overview Options for distribution
1. Distribute copies of entire dataset

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Done often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Preferred method for big data or
very complex models (i.e.
models with many internal
parameters).

Options for Distributing MLSpark Overview Options for distribution
1. Distribute copies of entire dataset

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Done often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Preferred method for big data or
very complex models (i.e.
models with many internal
parameters).

Data Parellelism

Model Parellelism

● Parallelism :

○ Data Parallelism

○ Model Parallelism

○ Hybrid

Spark OverviewDistributed Training

● Data Parallelism: Scatter dataset into parts across different

workers to train on subsets and sync gradients

Spark OverviewDistributed PyTorch Training

● Data Parallelism: Scatter dataset into parts across different

workers to train on subsets and sync gradients

● Modes of Data Parallelism :

○ DataParallel

○ DistributedDataParallel

Spark OverviewDistributed PyTorch Training

Data Parallel: How it works?

Spark OverviewDistributed PyTorch Training

https://erickguan.me/2019/pytorch-parallel-model

https://erickguan.me/2019/pytorch-parallel-model

● Data Parallel

○ Most simple form of parallelism with minimal code change

○ Downside: Slower form of parallelism - involves inter node

communication 3x per training step

Spark OverviewDistributed PyTorch Training

DistributedDataParallel: How it works?

Spark OverviewDistributed PyTorch Training

(Li et al., 2020)

http://www.vldb.org/pvldb/vol13/p3005-li.pdf

● DistributedDataParallel

Spark OverviewDistributed PyTorch Training

AllReduce

(Li et al., 2020)

http://www.vldb.org/pvldb/vol13/p3005-li.pdf

X y
0

N

 Distributing Data

X y
0

batch_size-1

N-batch_size

N

 Distributing Data

 Distributing Data
X y

0

batch_size-1

N-batch_size

N

𝛳batch0

learn parameters (i.e. weights),
given graph with cost function
and optimizer

𝛳batch1

𝛳batch2

𝛳...

X y
0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine
parameters

 Distributing Data

 Distributing Data
X y

0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine
parameters

update params of each node and repeat

● DistributedDataParallel (Li et al., 2020)

○ Efficient form of parallelism but involves a little extra code

change*

○ Performs AllReduce on the computed gradients across all

nodes and machines

Spark OverviewDistributed PyTorch Training

* Extra code change if you are implementing using Pytorch. It has been made extremely simple by

pytorch-lightning

http://www.vldb.org/pvldb/vol13/p3005-li.pdf

● DistributedDataParallel (Li et al., 2020)

○ Efficient form of parallelism but involves a little extra code

change*

○ Performs AllReduce on the computed gradients across all

nodes and machines

○ Downside: Python pickles all objects while spawning

multiple processes (which happens in DDP). Code might

crash if an object is not pickle-able

Spark OverviewDistributed PyTorch Training

* Extra code change if you are implementing using Pytorch. It has been made extremely simple by

pytorch-lightning

http://www.vldb.org/pvldb/vol13/p3005-li.pdf

Model Parallelism: Distribute layer(s) of the model into different

machines/GPUs to train a very large network.

Spark Overview Options for distribution: PyTorch

● Model Parallelism: Distribute layer(s) of the model into different

machines/GPUs to train a very large network.

● Model Parallelism

○ Naive Model Parallelism

○ Pipelined Parallelism

Spark Overview Options for distribution: PyTorch

● Naive Model Parallelism

Spark Overview Options for distribution: PyTorch

● Naive Model Parallelism

Spark Overview Options for distribution: PyTorch

Mini batch

● Naive Model Parallelism

Spark Overview Options for distribution: PyTorch

Mini batch

Synchronous
Gradient updates at
the end of a batch

● Naive Model Parallelism

Spark OverviewDistributed PyTorch Training

Mini batch

Synchronous
Gradient updates at
the end of a batch

class ToyModel(nn.Module): #Pytorch: model_parallel_tutorial
 def __init__(self):
 super(ToyModel, self).__init__()
 self.net1 = torch.nn.Linear(10, 10).to('cuda:0')
 self.relu = torch.nn.ReLU()
 self.net2 = torch.nn.Linear(10, 5).to('cuda:1')

 def forward(self, x):
 x = self.relu(self.net1(x.to('cuda:0')))
 return self.net2(x.to('cuda:1'))

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear

● Naive Model Parallelism

Spark OverviewDistributed PyTorch Training

Mini batch

Synchronous
Gradient updates at
the end of a batch

Severe under utilization of resources due to sequential dependency of the network

Spark OverviewDistributed PyTorch Training

Huang et al., 2019

● Pipelined Parallelism

https://arxiv.org/pdf/1811.06965.pdf

● Pipelined Parallelism

Spark OverviewDistributed PyTorch Training

Huang et al., 2019

Mini batch split into
micro batches

https://arxiv.org/pdf/1811.06965.pdf

● Pipelined Parallelism

Spark OverviewDistributed PyTorch Training

Huang et al., 2019

Mini batch split into
micro batches

Synchronous
Gradient updates at
the end of a batch

https://arxiv.org/pdf/1811.06965.pdf

● Pipelined Parallelism

Spark OverviewDistributed PyTorch Training

Huang et al., 2019

Mini batch split into
micro batches

Synchronous
Gradient updates at
the end of a batch

Provides high utilization of workers while ensuring reliable + stable
training

https://arxiv.org/pdf/1811.06965.pdf

● Pipelined Parallelism

Spark OverviewDistributed PyTorch Training

PyTorch: Model Parallel best practices

https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html

● Hybrid

○ DeepSpeed (Rasley et al., 2020)

Spark OverviewDistributed PyTorch Training

https://dl.acm.org/doi/10.1145/3394486.3406703

Horovod is a distributed deep learning training framework.

Horovod helps scaling single GPU (worker) into multi-GPU or even

multi-host training without no code change

Horovod on spark: “provides a convenient wrapper around

Horovod that makes running distributed training jobs in Spark

clusters easy”

Spark OverviewHorovod: PyTorch PySpark

https://horovod.readthedocs.io/en/stable/spark_include.html

Distributed Hardware:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

● PyTorch is workflow system, where records are always tensors
○ operations applied to tensors

● Optimized for numerical / linear algebra
○ automatically finds gradients
○ specification of devices

● “Easily” distributes
○ Data Parallelism
○ Model Parallelism
○ Updating Parameters: AllReduce

Spark Overview Summary

