Neural Network Workflow Systems

CSE545 - Spring 2023 Stony Brook University

H. Andrew Schwartz

i.e. PyTorch TensorFlow

Big Data Analytics, The Class

Goal: Generalizations A model or summarization of the data.

Data Workflow Frameworks

Hadoop File System Spark

Streaming MapReduce Deep Learning Frameworks

Analytics and Algorithms

Similarity Search

Transformers/Self-Supervision

Recommendation Systems

Link Analysis

Hypothesis Testing

Spark is fast for being so flexible

- Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
- Flexible: Many transformations -- can contain any custom code.

Spark is fast for being so flexible

- Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
- Flexible: Many transformations -- can contain any custom code.

However:

• Hadoop MapReduce can still be better for extreme IO, data that will not fit in memory across cluster.

Spark is fast for being so flexible

- Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
- Flexible: Many transformations -- can contain any custom code.

However:

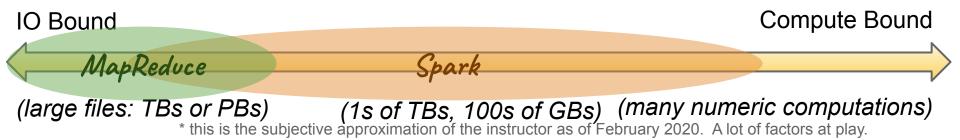
• Hadoop MapReduce can still be better for extreme IO, data that will not fit in memory across cluster.

Spark is fast for being so flexible

- Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
- Flexible: Many transformations -- can contain any custom code.

However:

- Hadoop MapReduce can still be better for extreme IO, data that will not fit in memory across cluster.
- Modern machine learning (esp. Deep learning), a common big data task, requires heavy numeric computation.

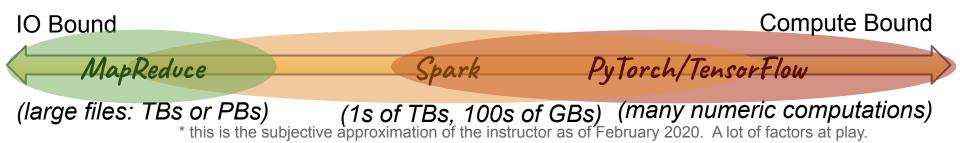


Spark is fast for being so flexible

- Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
- Flexible: Many transformations -- can contain any custom code.

However:

- Hadoop MapReduce can still be better for extreme IO, data that will not fit in memory across cluster.
- Modern machine learning (esp. Deep learning), a common big data task, requires heavy numeric computation.



Learning Objectives

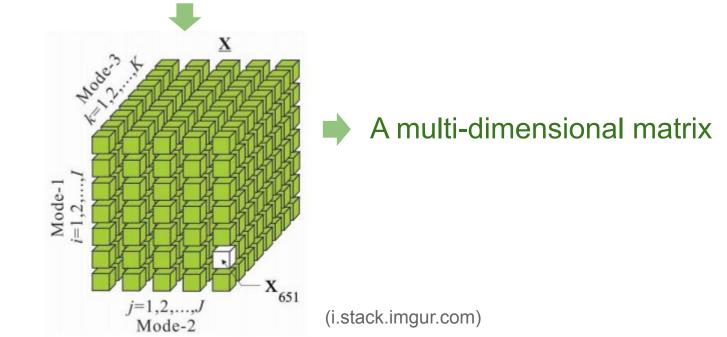
- Understand a neural network as transformations on tensors.
- Understand PyTorch as a data workflow system.
 - Know the key components of PyTorch
 - Understand the key concepts around *distributed* neural network processing.
- Execute basic pytorch on moderately large data.
- Establish a foundation to distribute deep learning models

What is **PyTorch**?

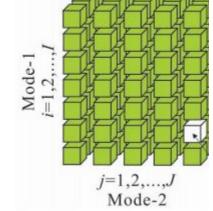
A workflow system catered to numerical computation.

One view: Like Spark, but uses *tensors* instead of *RDDs*.

One view: Like Spark, but uses *tensors* instead of *RDDs*.



One view: Like Spark, but uses *tensors* instead of *RDDs*.



A 2-d tensor is just a matrix. 1-d: vector 0-d: a constant / scalar

Note: Linguistic ambiguity: Dimensions of a Tensor =/= Dimensions of a Matrix

(i.stack.imgur.com)

One view: Like Spark, but uses *tensors* instead of *RDDs*.

Examples > 2-d : Image definitions in terms of RGB per pixel Image[*row*][*column*][*rgb*]

Subject, Verb, Object representation of language: Counts[verb][subject][object]

One view: Like Spark, but uses *tensors* instead of *RDDs*.

Technically, less abstract than *RDDs* which could hold tensors as well as many other data structures (dictionaries/HashMaps, Trees, ...etc...).

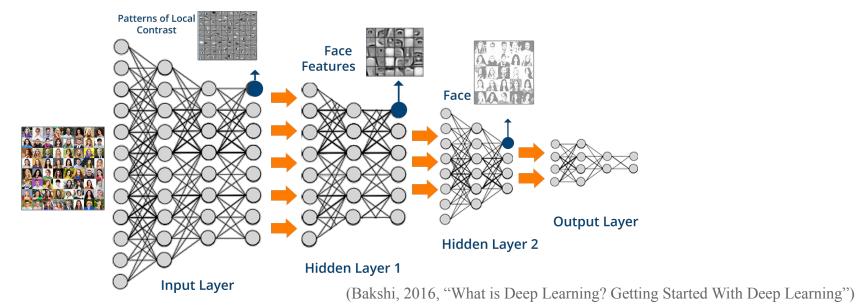
Then, why PyTorch?

Efficient, high-level built-in **linear algebra** and **machine learning optimization** *operations* (i.e. transformations).

enables complex models, like deep learning

Efficient, high-level built-in **linear algebra** and **machine learning optimization** *operations*.

enables complex models, deep neural networks

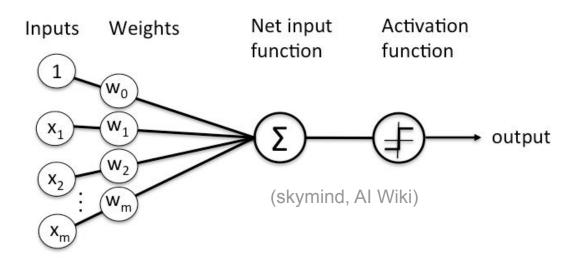


Linear Regression: $\hat{y} = wX$

Neural Network Nodes: output = f(wX)

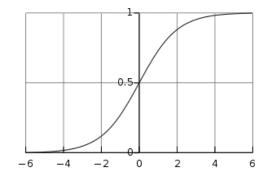
Linear Regression: $\hat{y} = wX$

Neural Network Nodes: output = f(wX)



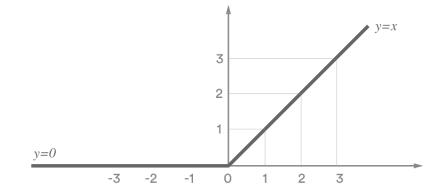
z = wX

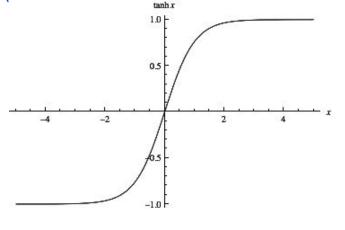
Logistic: $\sigma(z) = 1/(1 + e^{-z})$



Hyperbolic tangent: $tanh(z) = 2\sigma(2z) - 1 = (e^{2z} - 1)/(e^{2z} + 1)$

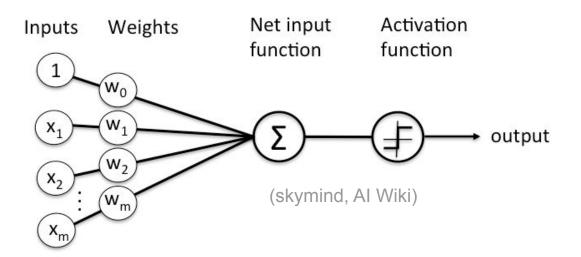
Rectified linear unit (ReLU): ReLU(z) = max(0, z)





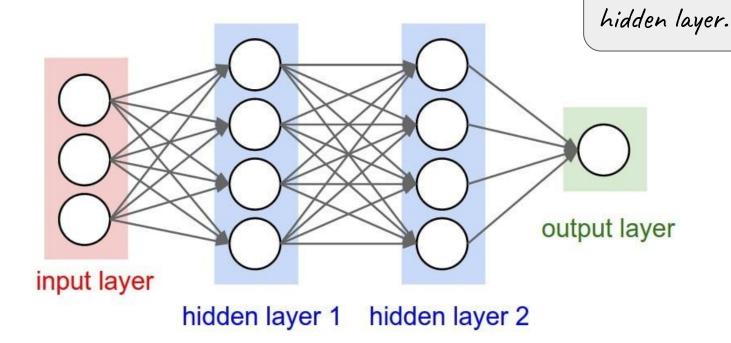
Linear Regression: y = wX

Neural Network Nodes: output = f(wX)



Efficient, high-level built-in **linear algebra** for deep neural network operations.

Efficient, high-level built-in **linear algebra** for <u>deep</u> neural network operations.



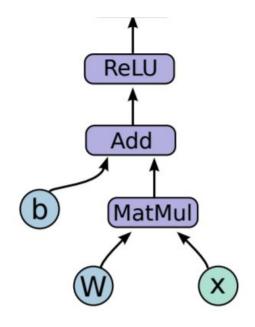
input layer

Efficient, high-level built-in **linear algebra** for <u>deep</u> neural network operations. More than one hidden layer. Will visit in part II output layer

hidden layer 1 hidden layer 2

Efficient, high-level built-in **linear algebra** for neural network operations.

Can be conceptualized as a graph of operations on tensors (matrices):

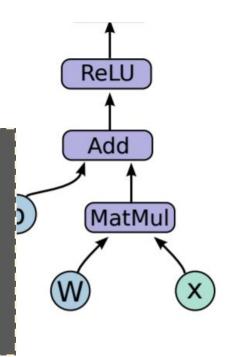


Efficient, high-level built-in **linear algebra** for neural network operations.

Can be conceptualized as a graph of operations on tensors (matrices):

import torch
from torch import nn #predefined nodes

x = torch.Tensor(input) w= torch.random.randn(X.shape, 1) #weights z = torch.matmul(x, beta) yhat = nn.functional.relu(z) loss = nn.MSELoss(yhat, torch.Tensor(y))



Linear Regression: $\hat{y} = \beta X$

Objective: Learn w, such that $(y - \beta X)^2$ is minimized

Linear Regression: $\hat{y} = \beta X$

Objective: Learn w, such that $(y - \beta X)^2$ is minimized

How do we solve for β ?

Linear Regression: $\hat{y} = \beta X$

Objective: Learn w, such that $(y - \beta X)^2$ is minimized

How do we solve for β ?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by equating it to 0

Linear Regression: $\hat{y} = \beta X$

Objective: Learn w, such that $(y - \beta X)^2$ is minimized

How do we solve for β ?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by equating it to 0

$$\beta_{opt} = (X^T X)^{-1} X^T y$$

Linear Regression: $\hat{y} = \beta X$

Objective: Learn w, such that $(y - \beta X)^2$ is minimized

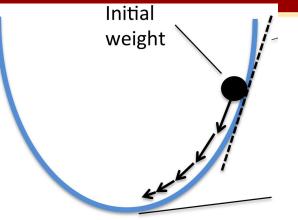
How do we solve for β ?

- 1. Analytic Gradient: Differentiate the objective, solve the system of equations by equating it to 0
- 2. Numerical Gradient: Start at a random point and move in the direction of minima until optima is reached

Linear Regression: $\hat{y} = \beta X$

Objective: Learn w, such that $(y - \beta X)^2$ is minimized

How do we solve for β ?



- Analytic Gradient: Differentiate the objective, solve the system of equations by equating it to 0
- 2. Numerical Gradient: Start at a random point and move in the direction of minima until optima is reached

Numerical Gradient Approach

Linear Regression: Trying to find "betas" that minimize:

$$\hat{\beta} = argmin_{\beta} \{\sum_{i}^{N} (y_i - \hat{y}_i)^2\}$$

$$\hat{\beta} = argmin_{\beta} \{\sum_{i}^{N} (y_i - \hat{y}_i)^2\}$$

matrix multiply

$$\hat{y}_i = X_i \hat{\beta}$$

$$\hat{\beta} = argmin_{\beta} \{\sum_{i}^{N} (y_{i} - \hat{y}_{i})^{2}\}$$

$$\hat{y}_{i} = X_{i} \hat{\beta} \quad \text{Thus:} \quad \hat{\beta} = argmin_{\beta} \{\sum_{i=0}^{N} (y_{i} - X_{i}\beta)^{2}\}$$

$$\hat{\beta} = argmin_{\beta} \{\sum_{i}^{N} (y_{i} - \hat{y}_{i})^{2}\}$$
$$\hat{y}_{i} = X_{i}\beta \quad \text{Thus:} \quad \hat{\beta} = argmin_{\beta} \{\sum_{i=0}^{N} (y_{i} - X_{i}\beta)^{2}\}$$

How to update? $\beta_{new} = \beta_{prev} - \alpha * \text{grad}$

$$\hat{\beta} = \arg\min_{\beta} \{\sum_{i}^{N} (y_i - \hat{y}_i)^2\}$$
$$\hat{y}_i = X_i\beta \quad \text{Thus:} \quad \hat{\beta} = \arg\min_{\beta} \{\sum_{i=0}^{N} (y_i - X_i\beta)^2\}$$

How to update? $\beta_{new} = \beta_{prev} - \alpha * \text{grad}$

a: Learning Rate

$$\hat{\beta} = \arg \min_{\beta} \{\sum_{i}^{N} (y_{i} - \hat{y}_{i})^{2}\}$$

$$\hat{y}_{i} = X_{i}\beta \quad \text{Thus:} \quad \hat{\beta} = \arg \min_{\beta} \{\sum_{i=0}^{N} (y_{i} - \bigvee_{i=0}^{N} ($$

Numerical Gradient Approach

Linear Regression: Trying to find "betas" that minimize:

Gradient Descent: $\beta_{new} = \beta_{prev} - \alpha * \text{grad}$

Linear Regression: Trying to find "betas" that minimize:

Gradient Descent: $\beta_{new} = \beta_{prev} - \alpha * \text{grad}$

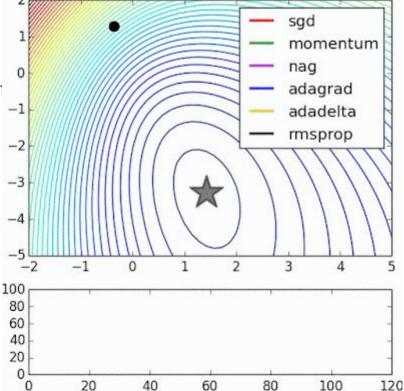
But there are other gradient descent based optimization methods which are better*

Numerical Gradient Approach

Linear Regression: Trying to find "betas" that minimize:

Gradient Descent: $\beta_{new} = \beta_{prev} - \alpha * \text{grad}$

But there are other gradient descent based op

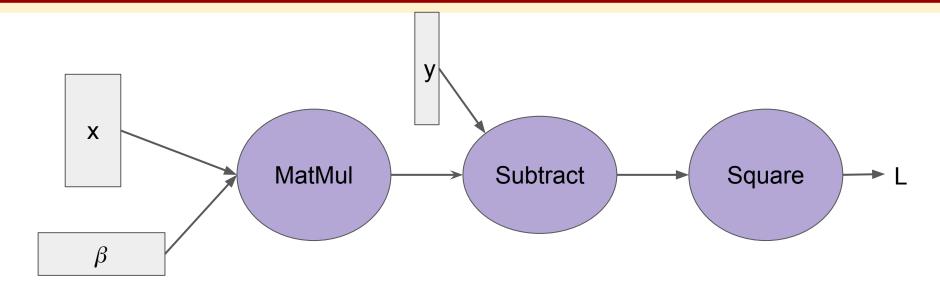


Animation: Alec Radford

How do Machine learning/ Deep learning frameworks represent these models?

How do Machine learning/ Deep learning frameworks represent these models?

Computational Graph!



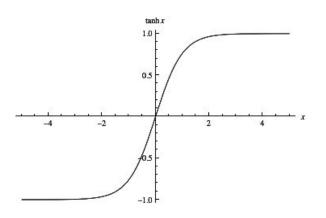
$$\mathsf{L} = (\mathsf{y} - \beta \mathsf{x})^2$$

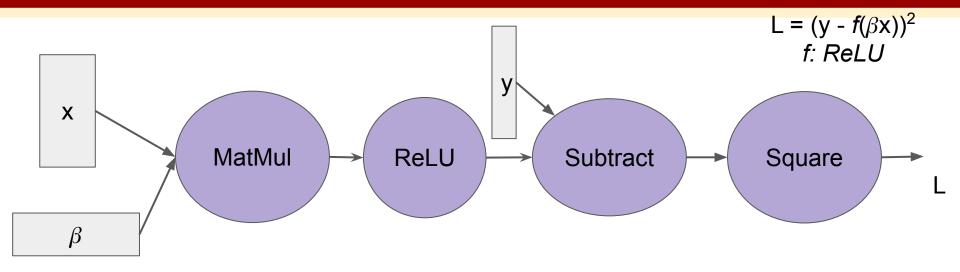
Activations

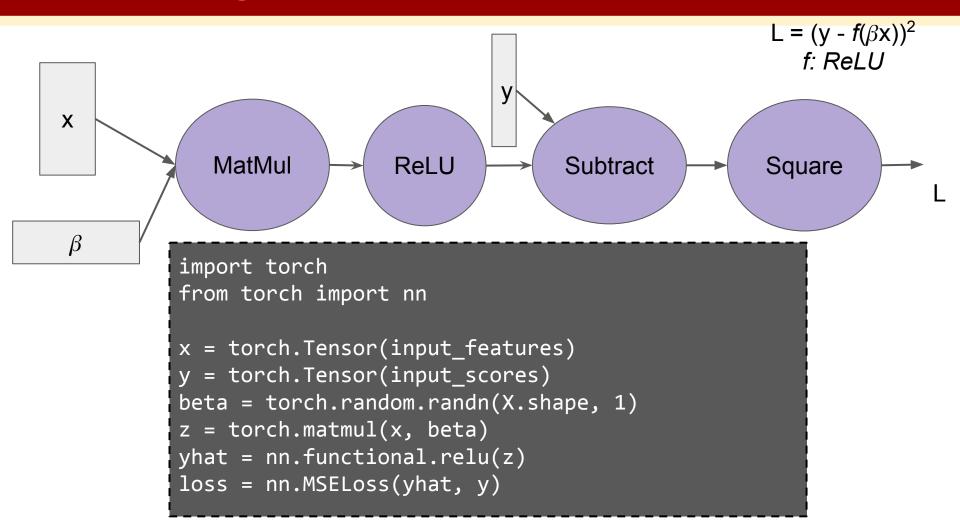
Rectified linear unit (ReLU): ReLU(z) = max(0, z)



Hyperbolic tangent: $tanh(z) = (e^{2z} - 1)/(e^{2z} + 1)$







PyTorch Demo

Native Linear Regression Implementation (Link)

Torch.nn Linear Regression Implementation (Link)

Ingredients of PyTorch

torch.Tensor
useful attributes:
 dtype: data type ('torch.float32')
 shape: tensor size
 device: where to store

operations (torch.)
computation on tensors, e.g.:
+, *, .floor, .abs
.sum, .max, .mean,
.matmul, .unique

nn.Module

init

forward

(graph)

building blocks (torch.nn)
predefined layers; e.g.:
.Linear, .ReLu,
.MSELoss, .Transformer
.CrossEntropyLoss

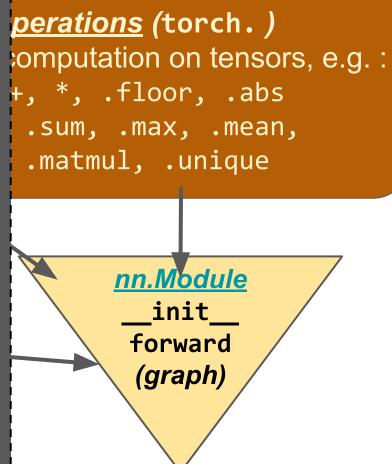
Ingredients of PyTorch

```
class ToyModel(nn.Module): #Pytorch: graph example
   def init (self):
                                              <u>perations</u> (torch. )
      #initialize all nn objects:
                                              computation on tensors, e.g. :
       super(ToyModel, self).__init__()
       self.net1 = torch.nn.Linear(10, 10)
                                              +, *, .floor, .abs
       self.relu = torch.nn.ReLU()
                                               .sum, .max, .mean,
       self.net2 = torch.nn.Linear(10, 1)
                                               .matmul, .unique
   def forward(self, x):
      #define graph
       x = self.relu(self.net1(x))
       return self.net2(x)
                                                      nn.Module
  building blocks (torch.nn)
                                                         init
   predefined layers; e.g.:
                                                        forward
     .Linear, .ReLu,
                                                        (graph)
     .MSELoss, .Transformer
     .CrossEntropyLoss
```

Ingredients of PyTorch

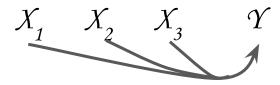
```
class ToyModel(nn.Module): #Pytorch: graph example
    def init (self):
       #initialize all nn objects:
        super(ToyModel, self). init ()
        self.net1 = torch.nn.Linear(10, 10)
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(10, 1)
    def forward(self, x):
       #define graph
        x = self.relu(self.net1(x))
        return self.net2(x)
tm =ToyModel()
#training loop
for i in range(num_iters):
   y_p = tm(x)
    nn.MSELoss(y_pred, y)
```

. . .



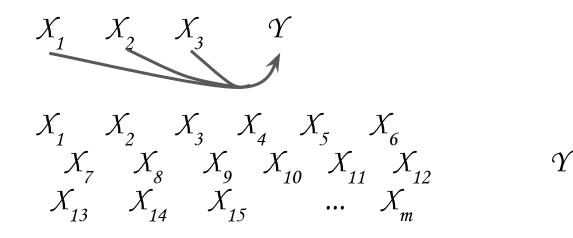
Typical use-case: (Supervised Machine Learning) Determine weights, \mathcal{W} , of a function, f, such that $|\varepsilon|$ is minimized: $f(X|\mathcal{W}) = \mathcal{Y} + \varepsilon$

- Typical use-case:
- Determine weights, \mathcal{W} , of a function, f, such that $|\varepsilon|$ is minimized: $f(\mathcal{X} | \mathcal{W}) = \mathcal{Y} + \varepsilon$



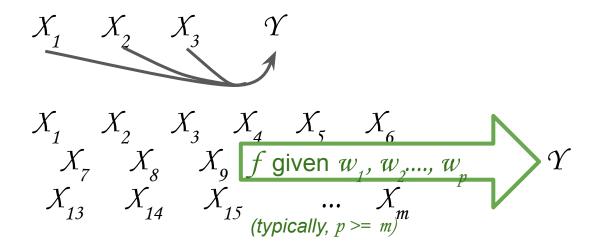
Typical use-case:

Determine weights, \mathcal{W} , of a function, f, such that $|\varepsilon|$ is minimized: $f(\mathcal{X} | \mathcal{W}) = \mathcal{Y} + \varepsilon$



Typical use-case:

Determine weights, \mathcal{W} , of a function, f, such that $|\varepsilon|$ is minimized: $f(\mathcal{X} | \mathcal{W}) = \mathcal{Y} + \varepsilon$

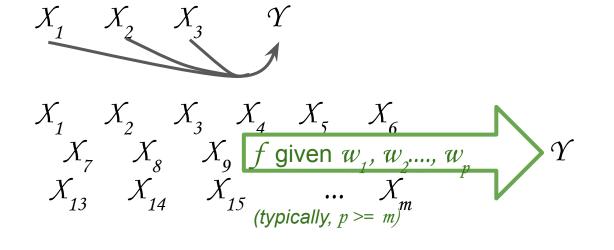


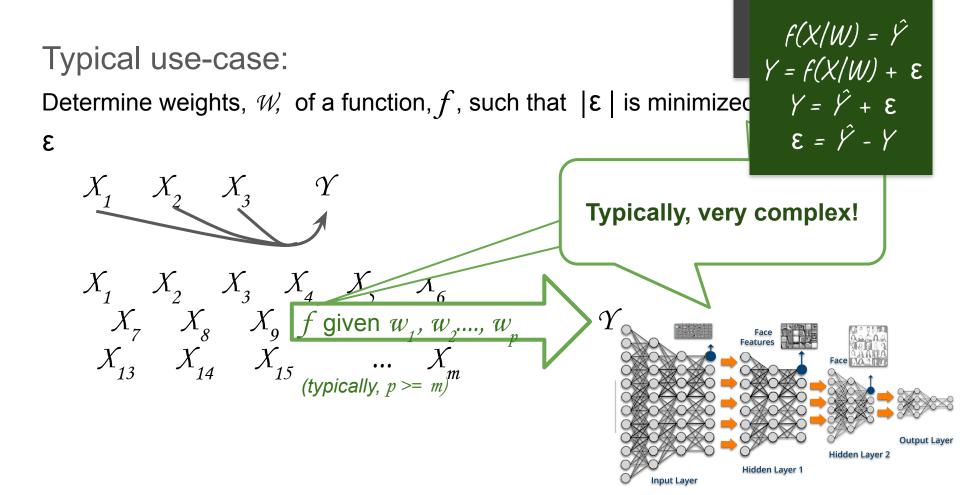
3

Typical use-case:

Determine weights, \mathcal{W} , of a function, f, such that $|\varepsilon|$ is minimized $Y = \hat{Y} + \varepsilon$

 $f(X/W) = \hat{Y}$ $Y = (X/W) + \varepsilon$ $\mathbf{E} = \hat{Y} - Y$





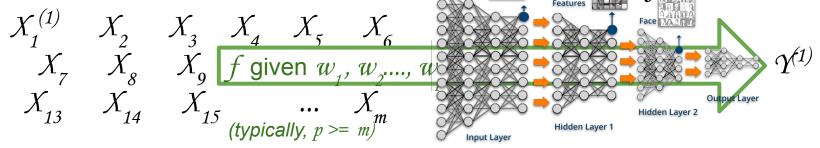
3

Typical use-case:

Determine weights, \mathcal{W} , of a function, f, such that $|\mathbf{\varepsilon}|$ is minimized

\mathcal{W} determined through gradient descent:

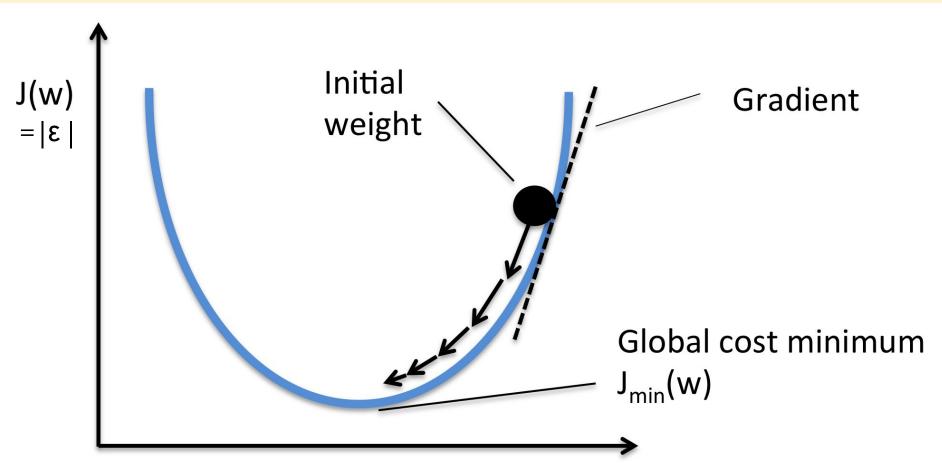
back propagating error across the network that defines f_{restures}



$$f(X/W) = \hat{Y}$$
$$Y = (X/W) + \varepsilon$$
$$Y = \hat{Y} + \varepsilon$$
$$\varepsilon = \hat{Y} - Y$$

$f(X/W) = \hat{Y}$ $Y = (X/W) + \varepsilon$ Typical use-case: $Y = \hat{Y} + \epsilon$ Determine weights, \mathcal{W}_{f} of a function, f, such that $|\varepsilon|$ is minimized $\varepsilon = \hat{Y} - Y$ 3 W determined through gradient descent: back propagating error across the network that defines Hidden Layer 2 lidden Layer 1 minimizes ε on **N** training examples

Weights Derived from Gradients



Weights Derived from Gradients

Linear Regression: Trying to find "betas" that minimize:

$$\hat{\beta} = \arg \min_{\beta} \{\sum_{i}^{N} (y_{i} - \hat{y}_{i})^{2}\}$$

$$\hat{y}_{i} = X_{i}\beta \quad \text{Thus:} \qquad \hat{\beta} = \arg \min_{\beta} \{\sum_{i=0}^{N} (y_{i} - X_{i}\beta)^{2}\}$$
How to update?
$$\beta_{new} = \beta_{prev} - \alpha * \operatorname{grad-}_{\text{(for gradient descent)}}$$
(for gradient descent) "learning rate"

Weights Derived from Gradients

Linear Regression: Trying to find "betas" that minimize:

$$\hat{\beta} = argmin_{\beta} \{\sum_{i}^{N} (y_{i} - \hat{y}_{i})^{2} \}$$

$$\hat{y}_{i} = X_{i} \hat{\beta} \quad \text{Thus:} \quad \hat{\beta} = argmin_{\beta} \{\sum_{i=0}^{N} (y_{i} - X_{i}\beta)^{2} \}$$

In standard linear equation:

$$y = mx + b$$
 let $x' = x + [1, 1, ..., 1]_N^T$
then, $y = mx'$

800

(if we add a column of 1s, mx + b is just matmul(m, x))

How to train GPT3?

Time to train Bert Large (330 M) on K80, which is 530 times smaller than GPT3

# GPUs	Training Time (minutes)	Per-GPU Scaling Efficiency
1	399	1.00

Time to train Bert Large (330 M) on K80, which is 530 times smaller than GPT3

# GPUs	Training Time (minutes)	Per-GPU Scaling Efficiency
1	399	1.00

For the same amount of data, GPT3 can be trained in 212k mins = 3533 hours = 147 days*

Dave Troiano, 2020

*GPT3 wont fit into the memory of a single K80

How to train GPT3?

Time to train Bert Large (330 M) on K80, which is 530 times smaller than GPT3

# GPUs	Training Time (minutes)	Per-GPU Scaling Efficiency
1	399	1.00
2	214	0.93
4	118	0.85
8	61	0.82

- 1. Distribute copies of entire dataset
 - a. Train over all with different hyperparameters
 - b. Train different folds per worker node.

1. Distribute copies of entire dataset

- a. Train over all with different parameters
- b. Train different folds per worker node.

2. Distribute data

- a. Each node finds parameters for subset of data
- b. Needs mechanism for updating parameters
 - i. Centralized parameter server
 - ii. Distributed All-Reduce

1. Distribute copies of entire dataset

- a. Train over all with different parameters
- b. Train different folds per worker node.

2. Distribute data

- a. Each node finds parameters for subset of data
- b. Needs mechanism for updating parameters
 - i. Centralized parameter server
 - ii. Distributed All-Reduce

3. Distribute model or individual operations (e.g. matrix multiply)

1. Distribute copies of entire dataset

- a. Train over all with different parameters
- b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data

- a. Each node finds parameters for subset of data
- b. Needs mechanism for updating parameters
 - i. Centralized parameter server
 - ii. Distributed All-Reduce

Pro: Flexible to all situations;

Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring Intermediar data.

Done often in practice. Not talked about much because it's mostly as easy as it sounds.

- 1. Distribute copies of entire dataset
 - a. Train over all with different parameters
 - b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data

- a. Each node finds parameters for subset of data
- b. Needs mechanism for updating parameters
 - i. Centralized parameter server
 - ii. Distributed All-Reduce

Pro: Flexible to all situations;

Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring Intermediar data.

Done often in practice. Not talked about much because it's mostly as easy as it sounds.

- 1. Distribute copies of entire dataset
 - a. Train over all with different parameters
 - b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data

a. Each node finds parameters for subset of data

- b. Needs mechanism for updating parameters
 - i. Centralized parameter server
 - ii. Distributed All-Reduce

Preferred method for big data or very complex models (i.e. models with many internal parameters).

Pro: Flexible to all situations;

Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized

Con: High communication for transferring Intermediar data.

Done often in practice. Not talked about much because it's mostly as easy as it sounds.

- 1. Distribute copies of entire dataset
 - a. Train over all with different parameters
 - b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

Pro: Flexible to all situations;

Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: PaModel Parellelismed

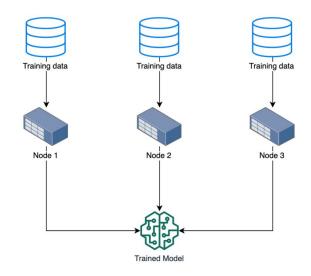
Con: High communication for transferring Intermediar data.

Distributed Training

- Parallelism :
 - Data Parallelism
 - Model Parallelism
 - \circ Hybrid

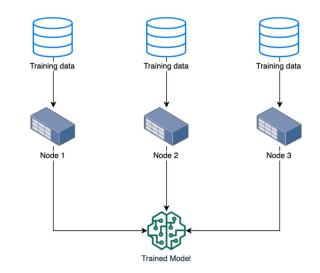
Distributed PyTorch Training

• Data Parallelism: Scatter dataset into parts across different workers to train on subsets and sync gradients



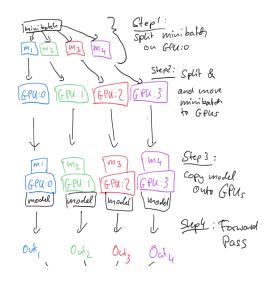
Data Parallelism

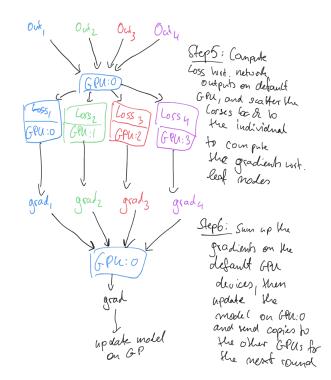
- Data Parallelism: Scatter dataset into parts across different workers to train on subsets and sync gradients
- Modes of Data Parallelism :
 - DataParallel
 - DistributedDataParallel



Data Parallelism

Data Parallel: How it works?

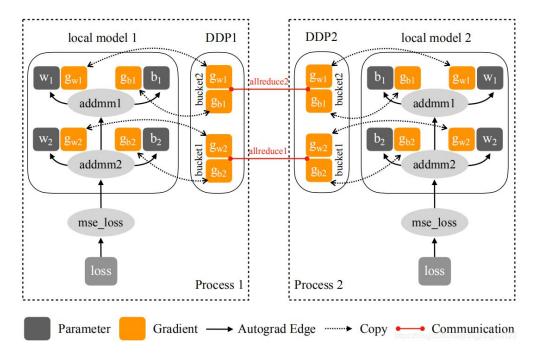




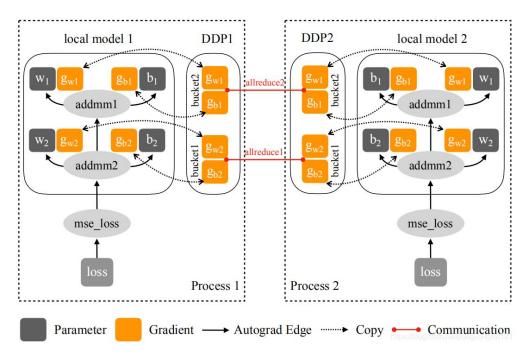
https://erickguan.me/2019/pytorch-parallel-model

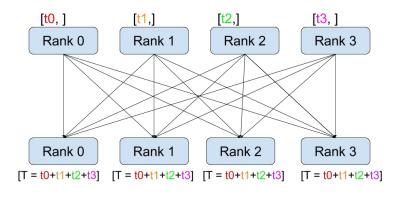
- Data Parallel
 - Most simple form of parallelism with minimal code change
 - Downside: Slower form of parallelism involves inter node communication 3x per training step

DistributedDataParallel: How it works?

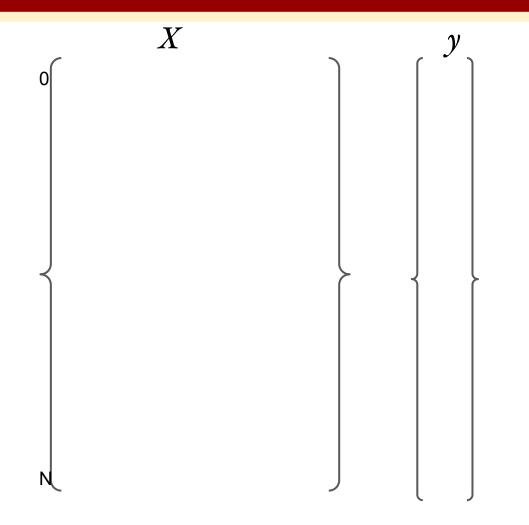


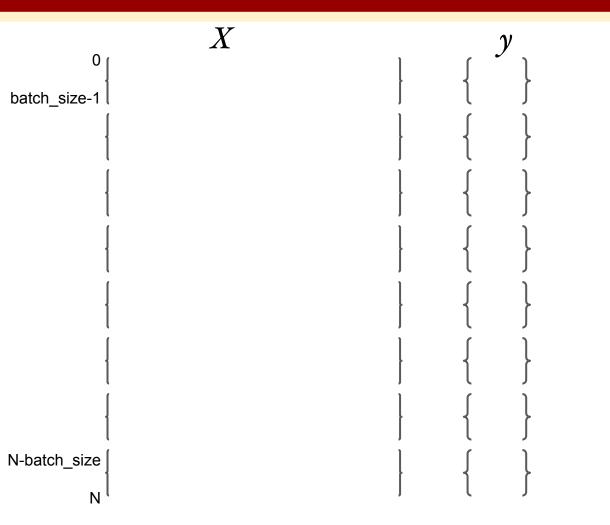
• DistributedDataParallel



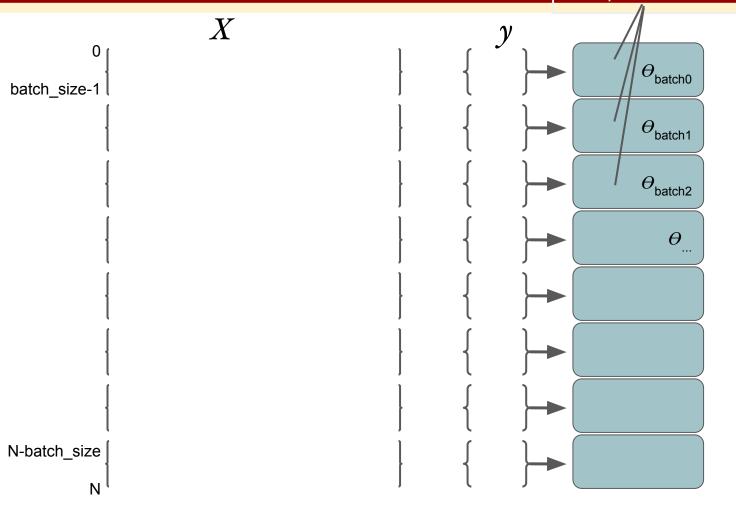


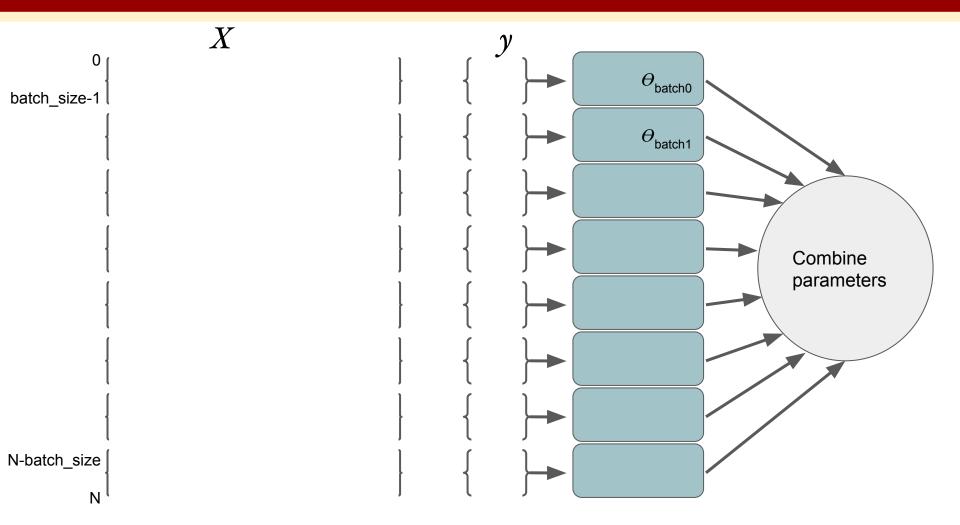
AllReduce



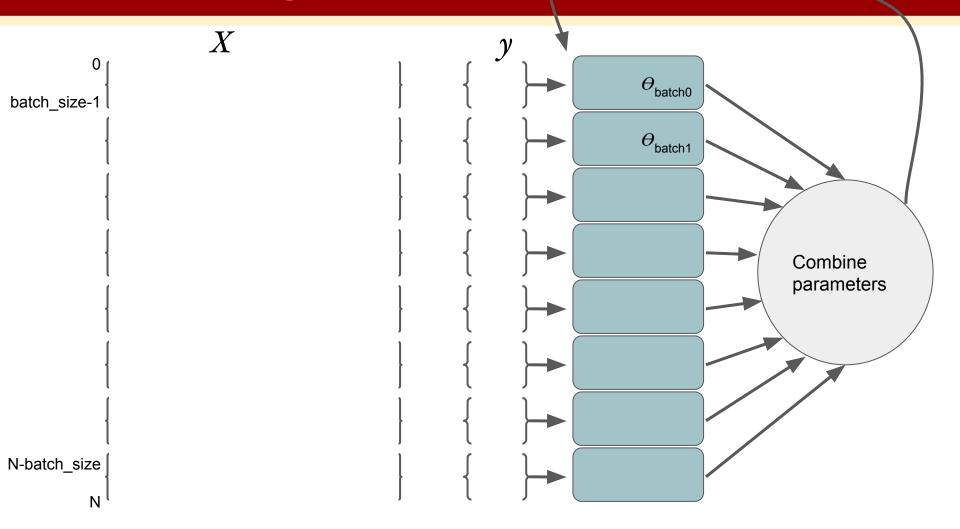


learn parameters (i.e. weights), given graph with cost function and *optimizer*





update params of each node and repeat



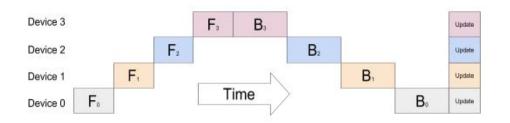
- DistributedDataParallel (<u>Li et al., 2020</u>)
 - Efficient form of parallelism but involves a little extra code change*
 - Performs AllReduce on the computed gradients across all nodes and machines

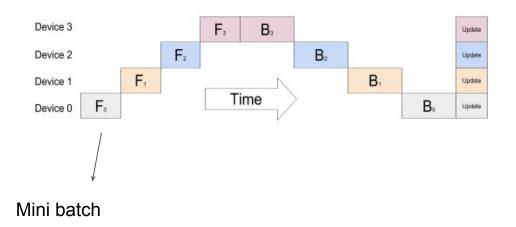
- DistributedDataParallel (<u>Li et al., 2020</u>)
 - Efficient form of parallelism but involves a little extra code change*
 - Performs AllReduce on the computed gradients across all nodes and machines
 - Downside: Python pickles all objects while spawning multiple processes (which happens in DDP). Code might crash if an object is not pickle-able
 * Extra code change if you are implementing using Pytorch. It has been made extremely simple by

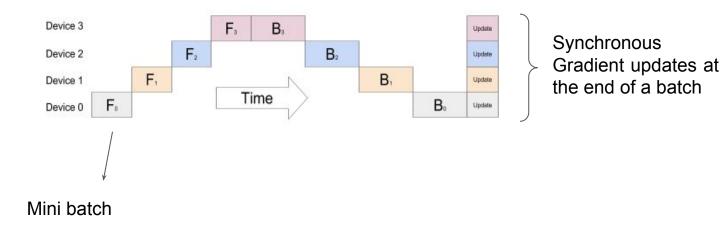
Model Parallelism: Distribute layer(s) of the model into different

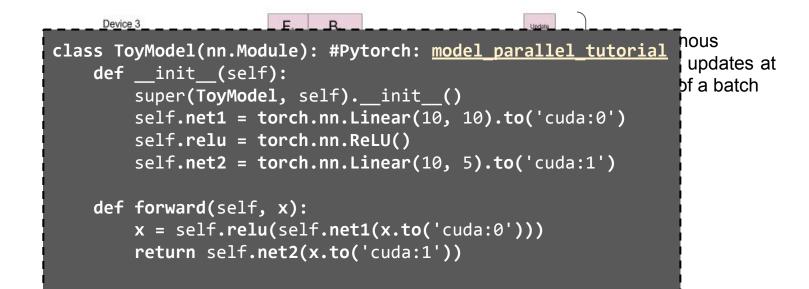
machines/GPUs to train a very large network.

- Model Parallelism: Distribute layer(s) of the model into different machines/GPUs to train a very large network.
- Model Parallelism
 - Naive Model Parallelism
 - Pipelined Parallelism

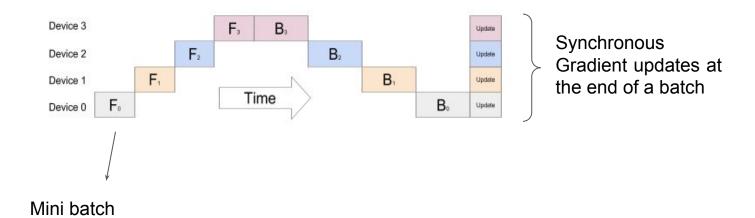








Naive Model Parallelism

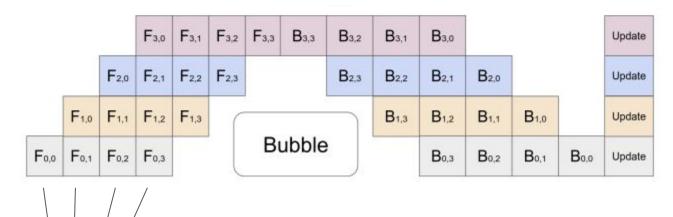


Severe under utilization of resources due to sequential dependency of the network

• Pipelined Parallelism

			F _{3,0}	F _{3,1}	F _{3,2}	F _{3,3}	B _{3,3}	B _{3,2}	B 3,1	B 3,0				Update
		F _{2,0}	F _{2,1} F _{1,2}	F _{2,2}	F _{2,3}			B _{2,3}	B _{2,2}	B _{2,1} B _{1,2}	B _{2,0}	B 1,0		Update Update
	F1,0			F1,3	ſ				B _{1,3}					
F _{0,0}	F _{0,1}	F0,2	F _{0,3}		1	В	Bubble			B 0,3	B _{0,2}	B 0,1	B 0,0	Update

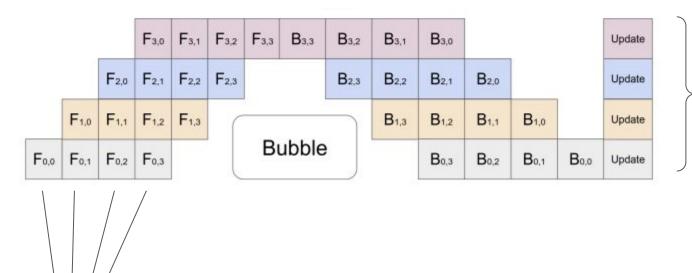
• Pipelined Parallelism



Mini batch split into micro batches

Huang et al., 2019

• Pipelined Parallelism



Synchronous Gradient updates at the end of a batch

Mini batch split into micro batches

Huang et al., 2019

• Pipelined Parallelism

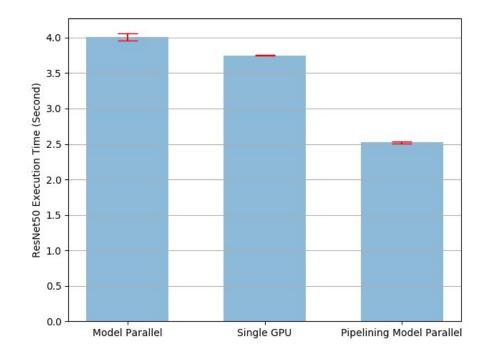
Synchronous Gradient updates at the end of a batch

Mini batch split into micro batches

Provides high utilization of workers while ensuring reliable + stable training

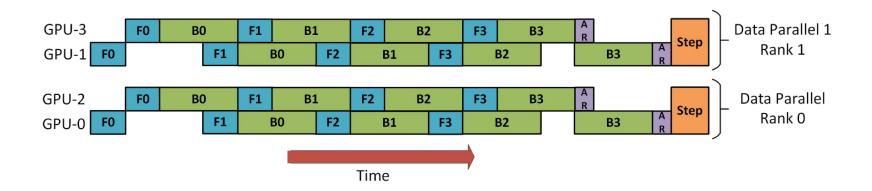
Huang et al., 2019

• Pipelined Parallelism



PyTorch: Model Parallel best practices

- Hybrid
 - DeepSpeed (<u>Rasley et al., 2020</u>)



Horovod: PyTorch Syspark

Horovod is a distributed deep learning training framework.

Horovod helps scaling single GPU (worker) into multi-GPU or even multi-host training without no code change

Horovod on <u>spark</u>: "provides a convenient wrapper around Horovod that makes running distributed training jobs in Spark clusters easy"

Distributed Hardware:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn't work with Model Parallelism)

Summary

- PyTorch is workflow system, where records are always tensors
 operations applied to tensors
- Optimized for numerical / linear algebra
 - automatically finds gradients
 - specification of devices
- "Easily" distributes
 - Data Parallelism
 - Model Parallelism
 - Updating Parameters: AllReduce